<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:Wingdings;
        panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Aptos;
        panose-1:2 11 0 4 2 2 2 2 2 4;}
@font-face
        {font-family:"PT Sans";
        panose-1:2 11 5 3 2 2 3 2 2 4;}
@font-face
        {font-family:STIXGeneral-Italic;
        panose-1:2 11 6 4 2 2 2 2 2 4;}
@font-face
        {font-family:STIXGeneral-Regular;
        panose-1:2 11 6 4 2 2 2 2 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        font-size:12.0pt;
        font-family:"Aptos",sans-serif;
        mso-ligatures:standardcontextual;
        mso-fareast-language:EN-US;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Aptos",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        mso-fareast-language:EN-US;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
        {page:WordSection1;}
/* List Definitions */
@list l0
        {mso-list-id:48497565;
        mso-list-template-ids:-1444910470;}
@list l0:level1
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:36.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Symbol;}
@list l0:level2
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:72.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:"Courier New";
        mso-bidi-font-family:"Times New Roman";}
@list l0:level3
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:108.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l0:level4
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:144.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l0:level5
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:180.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l0:level6
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:216.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l0:level7
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:252.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l0:level8
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:288.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l0:level9
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:324.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l1
        {mso-list-id:91056014;
        mso-list-template-ids:389711492;}
@list l1:level1
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:36.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Symbol;}
@list l1:level2
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:72.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:"Courier New";
        mso-bidi-font-family:"Times New Roman";}
@list l1:level3
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:108.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l1:level4
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:144.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l1:level5
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:180.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l1:level6
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:216.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l1:level7
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:252.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l1:level8
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:288.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l1:level9
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:324.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l2
        {mso-list-id:586426955;
        mso-list-template-ids:1891778604;}
@list l2:level1
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:36.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Symbol;}
@list l2:level2
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:72.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:"Courier New";
        mso-bidi-font-family:"Times New Roman";}
@list l2:level3
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:108.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l2:level4
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:144.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l2:level5
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:180.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l2:level6
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:216.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l2:level7
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:252.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l2:level8
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:288.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l2:level9
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:324.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l3
        {mso-list-id:801727448;
        mso-list-template-ids:827650104;}
@list l3:level1
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:36.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Symbol;}
@list l3:level2
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:72.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:"Courier New";
        mso-bidi-font-family:"Times New Roman";}
@list l3:level3
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:108.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l3:level4
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:144.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l3:level5
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:180.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l3:level6
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:216.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l3:level7
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:252.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l3:level8
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:288.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l3:level9
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:324.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l4
        {mso-list-id:1745910248;
        mso-list-template-ids:-239312798;}
@list l4:level1
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:36.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Symbol;}
@list l4:level2
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:72.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:"Courier New";
        mso-bidi-font-family:"Times New Roman";}
@list l4:level3
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:108.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l4:level4
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:144.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l4:level5
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:180.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l4:level6
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:216.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l4:level7
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:252.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l4:level8
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:288.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l4:level9
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:324.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l5
        {mso-list-id:2033140947;
        mso-list-template-ids:716331720;}
@list l5:level1
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:36.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Symbol;}
@list l5:level2
        {mso-level-number-format:bullet;
        mso-level-text:o;
        mso-level-tab-stop:72.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:"Courier New";
        mso-bidi-font-family:"Times New Roman";}
@list l5:level3
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:108.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l5:level4
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:144.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l5:level5
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:180.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l5:level6
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:216.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l5:level7
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:252.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l5:level8
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:288.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
@list l5:level9
        {mso-level-number-format:bullet;
        mso-level-text:;
        mso-level-tab-stop:324.0pt;
        mso-level-number-position:left;
        text-indent:-18.0pt;
        mso-ansi-font-size:10.0pt;
        font-family:Wingdings;}
ol
        {margin-bottom:0cm;}
ul
        {margin-bottom:0cm;}
--></style>
</head>
<body lang="en-NL" link="#467886" vlink="#96607D" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Dear all,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Tomorrow there will be
<b>no </b>talk in the AG.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Wednesday the homotopy theorist will invade our building. There will be three talks, and you should be able to recognize at least one speaker. The last one should be of interest to the symplectic
 dynamics people. The remaining talk is of a collaborator of Renee. Fun all around.
<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Best,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Thomas<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;background:white">
<b><span style="font-size:18.0pt;font-family:"PT Sans",sans-serif;color:#313131;mso-ligatures:none;mso-fareast-language:EN-GB">Wednesday 10 April, 2024<o:p></o:p></span></b></p>
<p class="MsoNormal" style="mso-margin-bottom-alt:auto;background:white"><b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#303030;mso-ligatures:none;mso-fareast-language:EN-GB">Time and Location</span></b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#515151;mso-ligatures:none;mso-fareast-language:EN-GB">:
 Vrije Universiteit Amsterdam, NU Building 9A46 (Maryam Mirzakhani seminar room), 13:00-17:00<o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-bottom-alt:auto;background:white"><b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#303030;mso-ligatures:none;mso-fareast-language:EN-GB">Speakers</span></b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#515151;mso-ligatures:none;mso-fareast-language:EN-GB">:<o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-bottom-alt:auto;background:white"><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#515151;mso-ligatures:none;mso-fareast-language:EN-GB">Thomas Rot - Vrije Universiteit Amsterdam (13:00-14:00)<o:p></o:p></span></p>
<ul style="margin-top:0cm" type="disc">
<li class="MsoNormal" style="color:#515151;mso-margin-bottom-alt:auto;mso-list:l2 level1 lfo4;background:white">
<b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#303030;mso-ligatures:none;mso-fareast-language:EN-GB">Title</span></b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">: Nonlinear
 proper Fredholm mappings and the stable homotopy groups of spheres<o:p></o:p></span></li><li class="MsoNormal" style="color:#515151;mso-margin-bottom-alt:auto;mso-list:l2 level1 lfo4;background:white">
<b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#303030;mso-ligatures:none;mso-fareast-language:EN-GB">Abstract</span></b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">:
 Nonlinear elliptic PDE problems can be described as zero finding problems of non-linear proper Fredholm mappings </span><span style="font-size:17.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">f</span><span style="font-size:17.5pt;font-family:"STIXGeneral-Regular",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">:</span><span style="font-size:17.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">H</span><span style="font-size:17.5pt;font-family:"STIXGeneral-Regular",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">→</span><span style="font-size:17.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">H</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">�:�</span><span style="font-size:15.0pt;font-family:"Arial",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">→</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">�</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">,
 where </span><span style="font-size:17.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">H</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">�</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB"> is
 an infinite dimensional Hilbert space. In this talk I will classify these mappings up to homotopy in terms of a non-trivial quotient of the stable homotopy groups of spheres. This is joint work with Lauran Toussaint.<o:p></o:p></span></li></ul>
<p class="MsoNormal" style="mso-margin-bottom-alt:auto;background:white"><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#515151;mso-ligatures:none;mso-fareast-language:EN-GB">Julia Semikina - Laboratoire Painlévé, University of Lille (14:30-15:30)<o:p></o:p></span></p>
<ul style="margin-top:0cm" type="disc">
<li class="MsoNormal" style="color:#515151;mso-margin-bottom-alt:auto;mso-list:l0 level1 lfo5;background:white">
<b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#303030;mso-ligatures:none;mso-fareast-language:EN-GB">Title</span></b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">: Cut-and-paste
 K-theory of manifolds and cobordisms<o:p></o:p></span></li><li class="MsoNormal" style="color:#515151;mso-margin-bottom-alt:auto;mso-list:l0 level1 lfo5;background:white">
<b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#303030;mso-ligatures:none;mso-fareast-language:EN-GB">Abstract</span></b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">:
 The generalized Hilbert’s third problem asks about the invariants preserved under the scissors congruence operation: given a polytope </span><span style="font-size:17.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">P</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">�</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB"> in </span><span style="font-size:17.5pt;font-family:"Cambria Math",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">ℝ</span><span style="font-size:12.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">n</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">��</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">,
 one can cut </span><span style="font-size:17.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">P</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">�</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB"> into
 a finite number of smaller polytopes and reassemble these to form </span><span style="font-size:17.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">Q</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">�</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">.
 Kreck, Neumann and Ossa introduced and studied an analogous notion of cut and paste relation for manifolds called the SK-equivalence (“schneiden und kleben” is German for “cut and paste”). In this talk I will explain the construction that will allow us to
 speak about the “K-theory of manifolds” spectrum. The zeroth homotopy group of the constructed spectrum recovers the classical groups </span><span style="font-size:17.5pt;font-family:"STIXGeneral-Regular",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">SK</span><span style="font-size:12.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">n</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">SK�</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">.
 I will show how to relate the spectrum to the algebraic </span><span style="font-size:17.5pt;font-family:"STIXGeneral-Italic",serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">K</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;border:none windowtext 1.0pt;padding:0cm;mso-ligatures:none;mso-fareast-language:EN-GB">�</span><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">-theory
 of integers, and how this leads to the Euler characteristic and the Kervaire semicharacteristic when restricted to the lower homotopy groups. Further I will describe the connection of our spectrum with the cobordism category.<o:p></o:p></span></li></ul>
<p class="MsoNormal" style="mso-margin-bottom-alt:auto;background:white"><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#515151;mso-ligatures:none;mso-fareast-language:EN-GB">Alice Hedenlund - Uppsala University (16:00-17:00)<o:p></o:p></span></p>
<ul style="margin-top:0cm" type="disc">
<li class="MsoNormal" style="color:#515151;mso-margin-bottom-alt:auto;mso-list:l3 level1 lfo6;background:white">
<b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#303030;mso-ligatures:none;mso-fareast-language:EN-GB">Title</span></b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">: Twisted
 Floer Homotopy Types From Seiberg-Witten Floer Data<o:p></o:p></span></li><li class="MsoNormal" style="color:#515151;mso-margin-bottom-alt:auto;mso-list:l3 level1 lfo6;background:white">
<b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;color:#303030;mso-ligatures:none;mso-fareast-language:EN-GB">Abstract</span></b><span style="font-size:15.0pt;font-family:"PT Sans",sans-serif;mso-ligatures:none;mso-fareast-language:EN-GB">:
 In the 90s, Cohen- Jones, and Segal asked the question of whether various types of Floer homology theories could be upgraded to the homotopy level by constructing stable homotopy types encoding Floer data. They also sketched how one could construct these Floer
 homotopy types as (pro)spectra in the situation that the infinite-dimensional manifold involved is “trivially polarized”. It has since been realized that the correct home for Floer homotopy types, in the polarized situation, is twisted spectra. This is a generalization
 of parametrized spectra that one can roughly think of as sections of bundles of categories whose fibre is the category of spectra. The aim of this talk is to give an introduction of Floer homotopy theory and twisted spectra. I will also outline the construction
 of a circle equivariant twisted spectrum from Seiberg-Witten Floer data associated to a 3-manifold equipped with a complex spin structure. As there are many moving parts to this (Atiyah-Singer index theory, finite-dimensional approximation, Conley index theory
 etc.), I will try to keep the talk on a conceptual level that will hopefully be accessible to a large audience. This is joint work in progress with S. Behrens and T. Kragh.<o:p></o:p></span></li></ul>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
</div>
</body>
</html>