<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:Helvetica;
        panose-1:0 0 0 0 0 0 0 0 0 0;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Aptos;
        panose-1:2 11 0 4 2 2 2 2 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        font-size:12.0pt;
        font-family:"Aptos",sans-serif;}
h4
        {mso-style-priority:9;
        mso-style-link:"Heading 4 Char";
        mso-margin-top-alt:auto;
        margin-right:0cm;
        mso-margin-bottom-alt:auto;
        margin-left:0cm;
        font-size:12.0pt;
        font-family:"Aptos",sans-serif;
        font-weight:bold;}
span.Heading4Char
        {mso-style-name:"Heading 4 Char";
        mso-style-priority:9;
        mso-style-link:"Heading 4";
        font-family:"Aptos",sans-serif;
        color:#0F4761;
        font-style:italic;}
span.EmailStyle22
        {mso-style-type:personal-reply;
        font-family:"Aptos",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;
        mso-ligatures:none;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
        {page:WordSection1;}
--></style>
</head>
<body lang="en-NL" link="#467886" vlink="purple" style="word-wrap:break-word">
<div class="WordSection1">
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<span style="font-size:11.5pt;font-family:Helvetica;color:black;font-weight:normal">Dear all,<o:p></o:p></span></h4>
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<span style="font-size:11.5pt;font-family:Helvetica;color:black;font-weight:normal"><o:p> </o:p></span></h4>
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<span style="font-size:11.5pt;font-family:Helvetica;color:black;font-weight:normal">Lots of events this week!<o:p></o:p></span></h4>
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<span style="font-size:11.5pt;font-family:Helvetica;color:black;font-weight:normal"><o:p> </o:p></span></h4>
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<span style="font-size:11.5pt;font-family:Helvetica;color:black;font-weight:normal">Tuesday, which is either tomorrow or today depending when you read your email, we have a guest in the AG from Bonn.<o:p></o:p></span></h4>
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<span style="font-size:11.5pt;font-family:Helvetica;color:black"><o:p> </o:p></span></h4>
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<span style="font-size:11.5pt;font-family:Helvetica;color:black">AG: 12-03-2024: 11:00 in Maryam: Karandeep Singh (Bonn) : Stability problems and differential graded Lie algebras</span><o:p></o:p></h4>
<p style="mso-margin-top-alt:0cm;margin-right:0cm;margin-bottom:3.75pt;margin-left:0cm;line-height:13.5pt;background:white;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:9.0pt;font-family:Helvetica;color:black">Abstract: Stability problems appear in various forms throughout geometry and algebra. For example, given a vector field $X$ on a manifold that vanishes in a point, when do all nearby vector fields
 also vanish somewhere? As an example in algebra, we can consider the following question: Given a Lie algebra $\mathfrak g$, and a Lie subalgebra $\mathfrak h$, when do all deformations of the Lie algebra structure on $\mathfrak g$ admit a Lie subalgebra close
 to $\mathfrak h$? I will show that both questions are instances of a general question about differential graded Lie algebras, and under a finite-dimensionality condition which is satisfied in the situations above, I will give a sufficient condition for a positive
 answer to the general question. I will then discuss the application to fixed points of Lie algebra actions.</span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt">This Friday we have a DDT&G with a guest from Columbia university (New York)<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<b><span style="font-size:11.5pt;font-family:Helvetica;color:black">15-03-2024 14:00-16:30 Amsterdam NU building 9-A46: <a href="https://www.math.columbia.edu/~flin/"><span style="color:blue">Francesco Lin </span></a>(Columbia): Topology of the Dirac equation
 on spectrally large three-manifolds<o:p></o:p></span></b></p>
<p class="MsoNormal" style="margin-bottom:3.75pt;line-height:13.5pt;background:white">
<span style="font-size:9.0pt;font-family:Helvetica;color:black">Abstract: In the first talk, I will review the classical work of Atiyah and Singer describing the homotopy type of the family of Dirac operators on a spin Riemannian manifold, and its consequences
 regarding metrics of positive scalar curvature. In the second talk, I will discuss how one can exploit the Seiberg-Witten equations and Floer theory to obtain more detailed information about the structure of the family in the case of a three-manifold for which
 the spectral gap of the Hodge Laplacian on coexact 1-forms is large compared to the curvature. For concreteness, we will have a special focus on the case of the n-torus throughout the talks.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt">I hope to see you both. As always, your students are also very welcome to attend!<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt">Best,<br>
Thomas</span><o:p></o:p></p>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</blockquote>
</div>
</body>
</html>