<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:Helvetica;
panose-1:0 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Aptos;
panose-1:2 11 0 4 2 2 2 2 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
font-size:12.0pt;
font-family:"Aptos",sans-serif;
mso-ligatures:standardcontextual;
mso-fareast-language:EN-US;}
h4
{mso-style-priority:9;
mso-style-link:"Heading 4 Char";
mso-margin-top-alt:auto;
margin-right:0cm;
mso-margin-bottom-alt:auto;
margin-left:0cm;
font-size:12.0pt;
font-family:"Aptos",sans-serif;
font-weight:bold;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#467886;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Aptos",sans-serif;
color:windowtext;}
span.Heading4Char
{mso-style-name:"Heading 4 Char";
mso-style-priority:9;
mso-style-link:"Heading 4";
font-family:"Aptos",sans-serif;
mso-ligatures:none;
mso-fareast-language:EN-GB;
font-weight:bold;}
.MsoChpDefault
{mso-style-type:export-only;
mso-fareast-language:EN-US;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
--></style>
</head>
<body lang="en-NL" link="#467886" vlink="#96607D" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Dear all,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Fabio was planned to speak tomorrow in the AG. He just emailed me that he has fallen ill unfortunately. I decided to step in, but I don’t have too much time to prepare. Prepare for that.
<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><b><span lang="EN-US" style="font-size:11.0pt">05-03-2024 11:00 in Maryam (NU9A46): Thomas: I like big balls and I cannot lie<o:p></o:p></span></b></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Abstract: I will talk about the topology of infinite dimensional manifolds. For half an hour or so I will discuss a result Lauran and I obtained last summer on infinite dimensional homotopy groups.
For the rest I will speak about ongoing work with Alberto Abbondandolo, Lauran and Michael on questionable homology. I will talk about some true statements that we can prove, and discuss some conjectures.
<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">The two weeks after we have external speakers: A guest of mine, and a guest of Senja. It would be nice to draw a crowd.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white">
<span style="font-size:11.5pt;font-family:Helvetica;color:black">AG: 12-03-2024: 11:00 in Maryam: Karandeep Singh (Bonn) : Stability problems and differential graded Lie algebras<o:p></o:p></span></h4>
<p style="mso-margin-top-alt:0cm;margin-right:0cm;margin-bottom:3.75pt;margin-left:0cm;line-height:13.5pt;background:white;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:9.0pt;font-family:Helvetica;color:black">Abstract: Stability problems appear in various forms throughout geometry and algebra. For example, given a vector field $X$ on a manifold that vanishes in a point, when do all nearby vector fields
also vanish somewhere? As an example in algebra, we can consider the following question: Given a Lie algebra $\mathfrak g$, and a Lie subalgebra $\mathfrak h$, when do all deformations of the Lie algebra structure on $\mathfrak g$ admit a Lie subalgebra close
to $\mathfrak h$? I will show that both questions are instances of a general question about differential graded Lie algebras, and under a finite-dimensionality condition which is satisfied in the situations above, I will give a sufficient condition for a positive
answer to the general question. I will then discuss the application to fixed points of Lie algebra actions.<o:p></o:p></span></p>
<p style="mso-margin-top-alt:0cm;margin-right:0cm;margin-bottom:3.75pt;margin-left:0cm;line-height:13.5pt;background:white">
<span style="font-size:9.0pt;font-family:Helvetica;color:black"><o:p> </o:p></span></p>
<h4 style="mso-margin-top-alt:3.75pt;margin-right:0cm;margin-bottom:7.5pt;margin-left:0cm;background:white;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:11.5pt;font-family:Helvetica;color:black">AG: 19-03-2024: 11:00 in Maryam: <a href="https://wpi-skcm2.hiroshima-u.ac.jp/people/yuka-kotorii/">Yuka Kotorii </a>(Hiroshima): Homotopy theories of colored links and spatial graphs<o:p></o:p></span></h4>
<p style="mso-margin-top-alt:0cm;margin-right:0cm;margin-bottom:3.75pt;margin-left:0cm;line-height:13.5pt;background:white;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;text-align:start;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:9.0pt;font-family:Helvetica;color:black">Abstract: Two links are called link-homotopic if they are transformed to each other by a sequence of self-crossing changes and ambient isotopies. The notion of link-homotopy is generalized to spatial
graphs and it is called component-homotopy. The link-homotopy classes were classified by Habegger and Lin through the classification of the link-homotopy classes of string links. In this talk, we classify colored string links up to colored link-homotopy by
using the Habegger-Lin theory. Moreover, we classify colored links and spatial graphs up to colored link-homotopy and component-homotopy respectively. This research is joint work with Atsuhiko Mizusawa.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt">Best,<br>
Thomas<o:p></o:p></span></p>
</div>
</body>
</html>