<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.EmailStyle19
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;
mso-ligatures:none;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
--></style>
</head>
<body lang="en-NL" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US">Dear all,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US">Tomorrow we have a guest in the AG from the far north (Groningen). With Marcello Seri I cosupervise Oscar Koster for his master thesis.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US">I know this is the holiday period, but I hope many of you will join so that we will have a reasonably sized audience.
<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><b><span style="mso-fareast-language:EN-US">Title:</span></b><span style="mso-fareast-language:EN-US"> Exploring sub-Riemannian orbifolds<br>
<br>
<b>Abstract:</b> Orbifolds and sub-Riemannian geometry are interesting generalizations of the concept of manifold. Orbifolds generalize manifolds by incorporating singularities, while sub-Riemannian manifolds exclude specific geodesics and restrict movement
to chosen subsets. But how to define a sub-Riemannian structure on an orbifold? I will talk about parking cars, falling cats, barber shops and teardrops in order to discuss these generalizations.<br>
<br>
First I focus on the example of lens space, which are quotient spaces without singularities and where a unique "Cartan decomposition" can be defined. This decomposition yields intriguing properties for the sub-Riemannian dynamics. Defining sub-Riemannian orbifolds
in general poses several challenges. In the talk I address these challenges and show cases where we can define a sub-Riemannian structure on an orbifold.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US">Best,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US">Thomas<o:p></o:p></span></p>
</div>
</body>
</html>