<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="en-NL" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal">Dear all,<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Below is an announcement for the next DDT&G seminar <span lang="EN-US">
in Leiden</span>. <span lang="EN-US">I think this might also be of interest of my dynamically inclined friends, hence I’ve also send to the dynamics mailing list as well.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">Please let masterstudents who might be interested also know about this minicourse.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">Hope to see you there!<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">Best,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">Thomas</span><o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><b>03-06-2022 Leiden Snellius 401.<a href="https://sites.google.com/site/mikhailhlushchanka/"> Misha Hlushchanka</a>: On Thurstons vision in geometry, topology, and dynamics<o:p></o:p></b></p>
<p class="MsoNormal">Schedule<o:p></o:p></p>
<p class="MsoNormal">14:00-15:00: First part of the minicourse<br>
15:30-16:30: Second part of the minicourse<o:p></o:p></p>
<p class="MsoNormal">Abstract<o:p></o:p></p>
<p class="MsoNormal">Since the 1980s, Bill Thurston has done fundamental work in apparently quite different areas of mathematics: geometry of 3-manifolds, geometry of surface automorphisms, and dynamics of branched covers of the 2-sphere. In all contexts, Thurstons
theorems have fundamental importance and are the cornerstones of ongoing research. These results are surprisingly closely connected both in statements and in proofs. In all three areas, the statements can be expressed as follows: either a topological object
has a geometric structure (the manifold is geometric, the surface automorphism has Pseudo-Anosov structure, a branched cover of the sphere respects the complex structure), or there is a well defined topological-combinatorial obstruction. Moreover, all three
theorems are proved by an iteration process in a finite dimensional Teichm<span lang="EN-US">ü</span>ller space (this is a complex space that parametrizes Riemann surfaces of finite type).<br>
The goal of this minicourse is to discuss Thurstons theorems (up to some level of detail) and the common machinery (Teichmuller theory) in a unified way, so as to highlight many of the analogies between the results. We may also have a glimpse at the modern
research in holomorphic dynamics continuing the legacy of Bill Thurston.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>