AUC Course Manual for Calculus

Course Name	Calculus			
Course #	900125ACCY			
Credits	6 EC			
Timeslot	Groups 3, 5, 6: Tue 9:00-10:30 and Fri 13:45-15:15			
	Groups 1, 4: Tue 11:00–12:30 and Fri 16:00–17:30			
	Group 2: Tue 13:45–15:15 and Fri 9:00–10:30			
Prerequisite(s)	Mathematics at exit level 'Wiskunde B' or comparable			
Related AUC Theme(s)	Energy, Climate and Sustainability; Life, Evolution, Universe; Health and Well-being; Information, Communication, Cognition			
Lecturers	Dr. Sonja Cox (Gr 1)	Dr. Fedde Benedictus (Gr 4)		
	Dr. Leo Tzou (Gr 1)	Dr. Gabriele Benedetti (Gr 5)		
	Dr. Noah Olander (Gr 2)	Dr. Wouter Kager (Gr 6)		
	Dr. Lorenzo Galeotti (Gr 3)			
Coordinator	Dr. Yurii Khomskii			

Course Content

This course deals with calculus of functions of one variable. In particular we cover:

- manipulating algebraically with exponential, logarithmic and (inverse) trigonometric functions
- determining limits of functions
- computing limits using l'Hôpital's rule
- calculating derivatives of any composition of elementary functions
- computing Taylor polynomials
- computing tangent lines to implicitly defined curves in the plane
- finding and classifying the (local) minima and maxima of functions
- graphing simple functions (e.g., rational functions, exponentials, logarithms, and compositions thereof)
- calculating areas under the graphs of elementary functions
- computing antiderivatives using integration by parts
- computing antiderivatives using an appropriately chosen substitution
- integrating simple rational functions (using "partial fractions")
- determining if an improper integral converges (and compute/estimate the area)
- solving first-order differential equations of separable type and of linear inhomogeneous type
- solving homogenous linear second-order differential equations with constant coefficients
- performing arithmetic with complex numbers
- determining if a series converges by comparing to a geometric series or p-series.
- determining if a series converges using an appropriately chosen convergence test
- determining the interval of convergence of a power series
- performing simple algebraic manipulations with power series

Students will also practice exercises in-class to improve their skills.

Learning Outcomes	At the end of this course students will be able to:				
	 calculate limits using appropriately chosen methods, such as l'Hôpital's rule or by identifying dominant terms 				
	compute derivatives, find local extreme values and use these to graph functions.				
	evaluate integrals using appropriately chosen methods, such as the substitution method, integration by parts of partial fraction expansion.				
	 solve simple differential equations with or without initia data. 				
	compute Taylor polynomials and manipulate Taylor series.				
	determine if an infinite series converges using an appropriately chosen test.				
	7. write down the arguments involved in solving a calculus problem in a logically correct manner.				
Contribution to the general learning outcomes; select from Academic Standards and Procedures (OER), section 2.3. Indicate number.	2.3.1a, 2.3.2a, 2.3.2b, 2.3.2d, 2.3.2h				
Form(s) of Instruction	Lectures, including (interactive) work on exercises				
Assessments	Week 6: Exam 1: 27% (LO 1,2,4,7)				
	Week 12: Exam 2: 27% (LO 1,2,3,4,7)				
	Week 16: Exam 3: 27% (LO 2,3,5,6,7)				
	MyMathLab assignments A1 – A12: 19% (LO 1-6)				
Main Course Sources	Calculus: A Complete Course by R.A. Adams and C. Essex, 10th ed., Pearson, ISBN 9780135732588				
Visits and Excursions	None				
Course Adjustments	We changed from 4 exams (unequally weighted) to 3 exams (equally weighted), and increased the number of MyMathLab assignments to 12. We cut out a couple of secondary topics so that there would be more time to focus on the most essential topics.				

Contact Information	Yurii Khomskii	E: <u>y.d.khomskii@uva.nl</u>
Lecturer	Lorenzo Galeotti	E: <u>l.galeotti@uva.nl</u>
	Wouter Kager	E: w.kager@vu.nl
	Sonja Cox	E: s.g.cox@uva.nl
	Leo Tzou	E: <u>l.l.tzou@uva.nl</u>
	Noah Olander	E: nolander@math.columbia.edu
	Gabriele Benedetti	E: g.benedetti@vu.nl
	Fedde Benedictus	E: F.J.Benedictus@uu.nl

Weekly Programme

Week	Date	Subject	Reading pages	Practice Exercises	Assessment
1a	6 Sep	Introduction	1-23	§P.1: 17, 19, 25, 31, 37, 41.	
1b	9 Sep	Functions, inequalities	23-58	§P.4: 12, 14, 15, 29, 33. §P.5: 7, 27, 33.	
2a	13 Sep	Limits	59-79	§1.2: 9, 12, 14, 22, 28, 36, 39, 78. §1.3: 3, 5, 7, 9, 11, 19, 28, 31.	MyMathLab A1 due
2b	16 Sep	Continuity and its consequences	79-88	§1.4: 1, 2, 13, 18, 29, 30, 32.	
3a	20 Sep	Differentiation	95-127	§2.2: 1, 2, 3, 4, 13a, 19a. §2.3: 8, 11, 21, 41. §2.4: 2, 6, 13, 30. §2.5: 13, 30, 58.	MyMathLab A2 due
3b	23 Sep	More on differentiation	127-150	§2.6: 4, 28. §2.8: 5, 6, 8, 16. §2.9: 10, 15, 17.	
4a	27 Sep	Inverse function, exponential, logarithm, inverse trig	166-184, 192-200	§3.1: 3, 8, 29. §3.2: 1, 4, 6, 11, 18, 30. §3.3: 6, 14, 25, 26, 43, 70. §3.5: 35, 42.	MyMathLab A3 due
4b	30 Sep	More limits, l'Hôpital's rule	185-192, 230-235	§3.4: 1, 3, 7, 9, 13. §4.3: 2, 3, 6, 10, 14, 24, 28.	
5a	4 Oct	Extreme values	236-247,	§4.4: 5, 20, 24, 35. §4.5: 1, 11, 17, 24, 34.	MyMathLab A4 due
5b	7 Oct	Graph sketching	247-255	§4.6: 3, 7, 9, 18, 23, 26, 27, 31, 35.	
6a	11 Oct	Applications of optimization	261-269	§4.8: 7, 20, 21, 23, 40.	MyMathLab A5 due
	14 Oct				Exam 1

8a	25 Oct	Integration: definition and properties	150-156, 291-307	§2.10: 8, 11, 21, 24, 37, 42. §5.1: 12, 19, 22, 33. §5.2: 7, 14. §5.3: 8, 10.	
8b	28 Oct	Fundamental theorem of calculus	307-319	§5.4: 9, 24, 30, 42. §5.5: 4, 9, 23, 40, 42, 47.	
9a	1 Nov	Area of plane regions	327-331	§5.7: 4, 8, 14, 18.	MyMathLab A6 due
9b	4 Nov	Substitution rule, Integration by parts	319-327, 334-340	§5.6 : 6, 7, 9, 11, 12, 17, 24, 43. §6.1 : 1, 3, 5, 7, 13, 31.	
10a	8 Nov	Partial fractions, Improper integrals	340-348, 363-371	§6.2: 6, 9, 11, 16. §6.5: 4, 12, 33, 34, 36	MyMathLab A7 due
10b	11 Nov	Solids of revolution, Mass, Center of mass	393-402 413-420	§7.1: 3, 17, 21, 22. §7.4: 1, 3, 5.	
11a	15 Nov	1 st order ODEs	185-192, 450-458	§3.4: 24, 29. §7.9: 2, 4, 6, 7, 11, 14, 18, 24, 28.	MyMathLab A8 due
11b	18 Nov	Complex numbers	A1-A10	§A1: 1, 2, 3, 4, 5, 6, 7, 9, 13, 15, 23, 25, 34, 36, 37, 41, 42, 48, 49, 52, 54.	
12a	22 Nov	2 nd -order linear ODEs	206-213	§3.7: 1, 3, 5, 7, 9, 13, 15, 16, 28.	MyMathLab A9 due
12b	25 Nov				Exam 2
13a	29 Nov	Sequences, infinite series	500-514	§9.1: 1, 3, 4, 7, 9, 10, 12, 18, 19, 20, 21, 22, 23. §9.2: 2, 3, 6, 12, 17, 18.	
13b	2 Dec	Convergence of series	515-521	§9.3: 4, 5, 6, 7, 10, 13, 25.	
14a	6 Dec	Ratio test, Root test	521-525 (up to Thm 12)	§9.3: 18, 22, 41.	MyMathLab A10 due
14b	9 Dec	Absolute / conditional convergence	525-531	§9.4: 1, 4, 5, 6, 7, 8, 17, 21, 22, 28.	
15a	13 Dec	Power series	531-542	§9.5: 5, 8, 12, 13, 15, 17, 32.	MyMathLab A11 due

15b	16 Dec	Taylor & Maclaurin series	542-551	§9.6: 3, 9, 10, 11, 23, 33, 40.	
16a	20 Dec				Exam 3