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Abstract. Digital Business Ecosystems (DBEs) increasingly rely on the
sharing of sensitive data between stakeholders to foster collaboration.
However, to restrict access to this data, traditional security mechanisms
are often not sufficient. This paper investigates one such case, part of the
Horizon Europe MUSIC360 project, where policymakers want to know
the economic value of music at the industry level. We propose a solu-
tion design approach that systematically links scenario-specific require-
ments to technical features of Privacy-Preserving Computation (PPC). A
proof-of-concept experiment using the Prio+ protocol demonstrates the
usability of our approach by showing that the selected implementation
meets both the functional and security requirements.

Keywords: Secure multi-party computation - Privacy-preserving com-
putation - Music digital business ecosystem - Security requirement solu-
tion.

1 Introduction

A digital business ecosystem (DBE) is a system of economic actors that depend
on each other for their economic well-being and survival [42]. Over the years,
DBEs have become complex and decentralized, where numerous stakeholders
exchange things of economic value, and to do so, share and transfer data.

Data sharing, especially in the case of valuable or privacy-sensitive data,
comes with the requirement to restrict access to data to selected parties [15].
Often, data can be protected by traditional and well-known security mecha-
nisms, like access control systems following the principles of Role-based Access
Control (RBAC), Attribute-based Access Control (ABAC), or Access Control
Lists (ACLs), enforced by the data owner itself. However, there exist use cases
where the well-known access control solutions are not sufficient. Take for exam-
ple one of the cases in the Horizon Europe MUSIC360 project, where we aim to
understand the value of music better. A particular stakeholder, namely the EU
policymaker, wants to know the average revenue of all EU rightholders (perform-
ers, text- & songwriters) per genre. The MUSIC360 platform collects and stores
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the data required to answer this question in Europe, but in a highly decentral-
ized way by using a set of data stores, where each store is under control by the
data owner (or a party that represents the data owner). The platform follows
the idea that stakeholders should stay in control of their own data and decide
for themselves how and with whom they want to share their data, e.g., their
revenue. Rightholders are willing to contribute to answering the question of pol-
icymakers, but for privacy reasons, they do not want to share data about their
individual revenue. There is also no trusted third party that could collect the
data about the revenue of all right-holders, calculate the revenue, and disclose
the calculated average revenue to the policymakers.

Such use cases can be solved by advanced privacy-preserving computation
(PPC) techniques. However, PPC as a field is highly technical and requires
a thorough understanding of cryptography and mathematics. What is lacking
is a comprehensive framework to guide the selection and integration of these
technologies for concrete use cases, which can be applied by practitioners. In
contrast, existing PPC research focuses on the techniques themselves or narrow
application domains at best, leaving practitioners without actionable guidance.
A systematic approach to evaluating PPC techniques for DBEs is absent, com-
plicating decisions for industry professionals. This paper addresses this gap by
proposing a solution design approach for these hard-to-solve security scenarios
and an early-stage mapping framework that bridges technical PPC features with
real-world requirements, validated through a case study in the music industry.

This paper is structured as follows. Sec. 2 summarizes relevant related work.
Our research approach is outlined in Sec. 3. We propose a solution design ap-
proach to deal with complex security requirements (Sec. 4), and show how that
works out in a concrete case in the EU music industry (Sec. 5). In Sec. 6 we
discuss the results and provide an outlook. Sec. 7 presents conclusions.

2 Related Work

Suppose participants in a DBE need to do operations (e.g., the scenario to cal-
culate the average for a set of revenue numbers) on a data set, while ensuring the
confidentiality of the participants’ data [20,35,39]. Without the aid of a trusted
third party, such a scenario can not be solved by traditional security approaches.
However PPC techniques can satisfy the requirements of such a scenario.
Currently, PPC techniques include (1) Secure Multi-Party Computation (SMPC),

(2) Homomorphic Encryption (HE), and (3) Differential Privacy (DP). SMPC
has evolved to support secure collaborative computations without exposing indi-
vidual inputs since Yao’s work on garbled circuits [45] and the subsequent gener-
alizations by Goldreich et al. [28]. More recent studies have focused on scaling and
improving SMPC protocols by combinations of methods such as secret sharing,
zero-knowledge proofs, garbled circuits, and homomorphic encryption [27,47].
HE is a cryptographic technique to do computing operations directly on cipher-
text without decrypting the data. The decrypted result is consistent with the
same operation on the plaintext. According to the types of operations supported,



Title Suppressed Due to Excessive Length 3

homomorphic encryption can be divided into Partially Homomorphic Encryption
(PHE), Somewhat Homomorphic Encryption (SWHE), and Fully Homomorphic
Encryption (FHE) [2]. However, due to the high computational complexity, effi-
ciency issues still limit its widespread deployment in practical applications. There
are complementary approaches which reduce the impact of these issues [23]. DP
offers protection for personal data in statistical databases by injecting controlled
noise into the output [14]. It is often used in privacy computing in addition to
other techniques such as SMPC or HE. Although DP is applied to large-scale
data analysis and machine learning systems, it still involves a careful trade-off
between privacy guarantees and data accuracy.

Although the literature has conducted in-depth research and comparisons on
various privacy-preserving computing technologies [5,11,16,26], there is still a
lack of a unified and systematic approach for how to select appropriate tech-
nologies based on specific DBE scenarios and privacy computing requirements.
Establishing such a mapping and decision-making approach will help narrow
the gap between theory and practice, especially for non-professionals, to better
design and test PPC solutions when certain security requirements arise.

3 Research Approach

We answer our research question (RQ) by Design Science Research (DSR) [22],
and more specifically, a Technical Action Research (TAR) approach [43].

RQ: How to systematically derive relevant security solutions to satisfy complex
security requirements in DBEs, e.g. while keeping in control of own valuable data,
even if that data is needed by others, e.qg. to compute other data?

We conduct our work with practitioners who (re)design and (re)develop the
MUSIC360 platform to better understand the value of music. The simplified
engineering cycle that we will follow is described below and shown in Fig. 1.

Problem
statement:
Scenario
needs

Solution design:
Mapping framework;

input

Problem
investigation:
RQ

Solution
selection:
Protocol(s)

Validation:
Usability of
protocol

Validation:
Usability of
framework

output

Fig. 1. Research design cycle

The left part of Fig. 1 shows the engineering cycle for the mapping framework,
which means that we will execute the cycle a number of times; this paper reports
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on one such cycle. The above RQ stems from a problem investigation phase and a
literature review in the fields of security requirements techniques, access controls,
and PPC. The ‘solution design: mapping framework’ represents a framework on
how to identify the security problem statement, scenarios, and security needs for
a specific DBE, and how to choose the most appropriate PPC technology, and is
our primary research artifact. Obviously, the question is whether the framework
is useful. One of the criteria that can be used to assess usefulness is to validate
whether the suggested PPC technique(s) meet the requirements. Of course, there
are other criteria that must hold to conclude that your framework is useful, but in
this paper we restrict ourselves to checking wether the selected PPC techniques
indeed satisfy the stated security requirements. The answer is not trivial, since
most PPC techniques are in an early state of development, without many cases of
usage in practice. Therefore, for the selected PPC technique by our framework,
we employ a prototyping approach to to develop a Mininum Viable Product
(MVP) that illustrates that the selected PPC technique satifies the requirements
(or not). We consider this as a (partly) validation of the framework.

The right part of Fig. 1 presents how a specific DBE, here MUSIC360, will be
explored. The general steps involved in this engineering cycle are: (1) describing
the problem statement, scenarios, and corresponding requirements of a partic-
ular case, (2) selecting technical PPC solutions & protocols for the identified
security and functional requirements via the proposed mapping framework, and
(3) validating whether the used protocols satisfy the requirements

4 Solution Design: Mapping Framework

4.1 Mapping framework process

Fig. 2 presents the solution design process to be executed, cf. the BPMN mod-
eling language [41]. We explain the process below:

[Pmblem statement: scenario needs I:Smuuon selection: protocols l:\/aunaﬂon usability of protocol
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Fig. 2. Mapping framework process
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Problem statement: Scenario needs. The process begins with an e3value
model [19] of the envisioned DBE (MUSIC360 in this paper). An e3value model
shows the objects of economic value that actors exchange, and because these
objects are of value, they are vulnerable to attack. The e3value model is not
presented in this paper. Based on the value objects, we elicit scenarios with
their functional and security requirements. These are analyzed for coherence
and consistency, resulting in a final set of requirements, usually after a few iter-
ations. Security requirements that can be solved by well-known techniques, such
as traditional access controls, will not be further dealt with. These requirements
should be satisfied for a DBE, but it is not our topic of interest.

Solution selection: Protocol(s). We then select the appropriate PPC tech-

niques for the remaining requirements, using feature extraction of known PPC
techniques. Given the maturity of the field of PPC, this extraction needs to be
updated regularly by experts.

Validation: Usability of protocol. A proof-of-concept prototype implemen-

tation of the target scenario through the selected PPC technique(s) will be con-
ducted for validation in terms of requirement satisfaction.

We emphasize that this paper is the first attempt to conduct the whole process
of the proposed research design cycle in Fig. 1 and the solution design approach
in Fig. 2. More engineering cycle iterations will be required to arrive at a more
comprehensive and mature framework.

4.2 Requirements that PPC can satisfy

Based on the literature (e.g., [27]) and experience with security design in the
MUSIC360 DBE, we present four security requirement types [RQTs] that PPC
can satisfy. We aim to extend and organize these requirements into a taxonomy
of security requirements, to allow for selection by practitioners.

— Data privacy protection [RQT1]. Parties want to collaborate with each
other without disclosing their data, while still allowing the use of that data.
This is crucial when collaborating with competitors.

— Secure peer-to-peer collaboration [RQT2]. Parties want to collaborate
without the need for a trusted third party (TTP) either because the TTP
does not exist or can not easily be created.

— Distributed data ownership [RQT3]. Data is not owned by a single
actor, but by multiple actors, and can only be used if all owners consent.

— Prevention of collusion [RQT4|. A well-known approach to cheating is
that two or more actors collude. A requirement can be to prevent collusion.

4.3 Features of PPC techniques.

Different PPC techniques have different sets of features that characterize the
technique at hand. Understanding these features is important to match security
requirements with the appropriate technique(s).
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The supposed [TSM] threat and security model. One consideration in
selecting a PPC technique is the threats-and-security model that defines the ad-
versary’s capabilities in the presence of certain types of attacks. Honest partici-
pants adhere strictly to the prescribed technique, refraining from any attempts
to extract information beyond their designated input data or the intended com-
putational output. In contrast, adversaries potentially compromise the integrity
or confidentiality of PPC technology, e.g., by manipulating the computation to
produce incorrect or inaccessible results [40]. Based on the behaviour of the ad-
versary, security models can be divided [1,47] into (1) the semi-honest adversary
model, which supposes that actors exactly follow the prespecified technique, but
they will try to learn as much as possible from the information observed; (2) the
malicious adversary model, where actors cannot obtain any information other
than their own input or the intended output; and (3) the covert adversary model
which balances security and efficiency by allowing adversaries to act maliciously
while risking detection.

The [CM] computing model. The computing model focuses on how calcu-
lations are done using the PPC technique, how specific computing tasks are
transformed into a form suitable for secure processing, and the encryption tech-
nologies and security assumptions it relies on. Different PPC approaches lever-
age distinct cryptographic foundations, protocols including those based on ho-
momorphic encryption (HE), and forms of SMPC such as secret sharing (SS),
oblivious transfer (OT) and garbled circuit (GC) [10, 21, 29, 33, 38, 46]. These
approaches always come with trade-offs in computational complexity, communi-
cation efficiency, and suitability for various types of operations. Additionally, the
communication overhead and computational complexity usually increase signifi-
cantly as the level of the security model increases. (1) HE-based solutions provide
strong security by allowing computations on encrypted data but suffer from high
computational costs, making it suitable for low-interaction settings [18,37]. (2)
SS-based achieves efficiency in linear operations through additive secret sharing
but incurs high communication overhead due to frequent interaction [3,12,13,36].
(3) OT-based approaches offer a balanced trade-off, with moderate communica-
tion volume and computational complexity, making them practical for scenarios
requiring secure lookups or non-interactive key exchange. However, pure OT-
based SMPC without extensions has limitations in performing linear operations
efficiently [8,9,31]. (4) GC-based provides constant communication rounds and
is highly efficient for boolean logic, but requires significant pre-processing and
high communication volume. [17,30].

The [DM] deployment model. The deployment model focuses on how the
protocol is implemented, that is, how the participants are distributed, how they
communicate, and whether auxiliary parties or servers are introduced. The IEEE
standards association has classified the SMPC deployment model into three types
[1]: (1) Server-side MPC: Data providers upload encrypted data to a set of non-
colluding servers that perform computations. This ensures data confidentiality
but relies on the trustworthiness of the servers; (2) Peer-to-peer MPC: Venues
run MPC computations themselves, reducing trust dependencies but increasing
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computational costs; and (3) Server-aided MPC: A hybrid approach where some
computation nodes are maintained by data providers, while others are external
servers that assist in intensive computations like Beaver triple generation.

The [SF] supported function. The technical basis of different PPC tech-
niques determines the scope of functions and the number of participants they
can efficiently support. Any function that can be represented by a circuit can
be computed in a privacy-preserving way. The efficiency of computing different
classes of functions, for example in terms of computation or communication cost,
depends on the technique.

5 Case Study: MUSIC360

The Horizon Europe MUSIC360 ecosystem is one example of an innovative digi-
tal business ecosystem !, which aims at providing insights into the value of music
to creatives (music performers and authors), venues (restaurants, retail shops,
offices), and policymakers (EU officials, national authorities and lobbyists). The
MUSIC360 ecosystem provides data about the value of music. One kind of data
collected by the MUSIC360 DBE is the economic effect of music played, for ex-
ample, in terms of increased revenue for the venue that plays the music. Venues
(shops, bars, etc.) do so to improve the well-being of customers, create a brand
identity, and eventually increase revenue.

In this section, we present the security solution design and validation for one
the scenarios of the MUSIC360 DBE. In particular, we execute the right part of
Fig. 1, which is further detailed in Fig. 2. The ‘Requirement Types’ in Sec. 4.2
and the ‘Features of PPC techniques’ in Sec. 4.3 of the mapping framework are
the input for this case study.

5.1 Problem statement

We present how we identify a specific hard-to-solve security scenario in MU-
SIC360 and state the problem by detailed scenario-specific requirements.

Elicit hard-to-solve security scenarios. Following our approach as illus-
trated in Fig. 2, we start to elicit security-focused scenarios, after a compre-
hensive analysis of the MUSIC360 ecosystem in terms of an e*value model to
understand the economic objects, which can be under attack. Many valuable
objects are data objects too, which have been further explored using UML class
modelling. Both the e3value DBE model and the associated class model are out
of scope for this paper. The protection of most of the identified data objects can
be achieved by using traditional security approaches like authentication, autho-
rization and detailed access control policies. However, there are a few scenarios
which can not be satisfied easily. One specific hard-to solve security scenario we
found in the MUSIC360 ecosystem is called ‘Average increased revenue’.

! https://www.music-360.eu
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Scenario description: ‘Average increased revenue’. In the MUSIC360
DBE, a policymaker would like to know the average increase in revenue of venues
(located in a specific region) as a result of playing music in these venues. In order
to use music, venues have to pay a fee to Collective Management Organizations
(CMOs). Every country has at least one CMO, but usually there are more of
them, each representing different kind of rightholders and intellectual property
rights. CMOs have a mandate to collect fees for their rightholders. Revenue data
of venues is confidential information, as it is competitive and sensitive data. E.g.
if the CMOs can obtain the precise revenue increase number associated with
music played at each venue separately, they may consider adjusting the venue’s
licensing fee accordingly. This could have a negative impact on venues. Therefore,
only the venue itself should have access to its respective revenue increase.

Scenario requirements. For the scenario ‘Average revenue of venues’, the fol-
lowing requirements are identified:

Functional: A party (e.g., policymakers) wants to know the influence (in terms
of average revenue increase for venues) of playing music at a number of venues:

1. The ability for venues to provide their data to compute the average revenue
for a set of venues.

2. The ability to compute the average over the input parties’ data.

3. The computation should be performed within an acceptable amount of time
(minutes is ok, hours not).

Security: The average should be calculated without disclosing the individual
revenue data from venues, which can be detailed as follows:

1. Policymakers as final result receivers should only have READ access to the
final result [RQT1]. Venues that did provide input data should only have
READ access to the final result and all access to their own input data.

2. Input parties deliver their input without disclosing their full and readable
input to a single party. Parties interested in the result of the calculation
obtain the complete result without obtaining the full result of a single party
[RQT1,2]. This implies that no single party knows the input of the individ-
ual venue, except the venue itself, and also no single party knows the result,
except the receiver (the policymaker).

3. Individual revenue values of venues must remain confidential and should not
be inferable from the final output or any intermediate data [RQT1].

4. The deployed solution must be resilient to collusion, e.g., a coalition of venues
and computation servers should not be able to reconstruct venue-specific
data [RQT4].

5. The technology should include mechanisms to prevent malicious inputs to
guarantee the correctness and effectiveness of the result, such as zero or
extreme outliers that could distort the average, without requiring disclosure
of actual input values.

6. There is no trusted third party who can do the calculation on behalf of the
party interested in the result [RQT?2].
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5.2 Solution selection

The requirements mentioned above cannot be solved by traditional security ap-
proaches tied to a single actor. Therefore, we analyze the ‘Average increased
revenue’ scenario in the SMPC context.

Involved parties. For the involved parties, we distinguish input parties, com-
putation parties and result parties. Input parties provide the data needed for
the computation, whereas the computational party performs the computations.
Result parties are the intended recipients of the computation. Fig. 3 explains
how the MUSIC360 parties play the role of input, computation and result party.

1. Venues are input parties: Each venue keeps its own increased revenue
data. This input data is secret.

2. CMOs are computation parties: CMOs receive and process the parts of
the revenue data without being able to reconstruct individual revenues.

3. Policymakers are result parties: Policymakers want to get the result:
the average revenue increase.

Using the mapping framework. We have derived specific requirements for
the scenario ‘Average increased revenue’. We classify them into [F] - functional
requirements factor, [S] - security requirements factor, and [O] - other require-
ments. We derive and generalize the factors below from the evaluated refined
scenario-specific requirements and map them to certain key technology features
we characterized in Sec.4.3.

1. Scenario factor: [F] Required calculation type & function.

— Requirement: Type: sum (addition), mean (division). Function:R,,, =
w, (R; = R; before — R; after)?345.

— Reasoning: Protocols supporting linear computation, especially an effi-
cient addition operation, is needed.

— Related PPC feature: [SF] Supported function: linear, addition.

2. Scenario factor: [S] Data ownership & confidentiality in multi-party
nature [RQT1].

— Requirement: Venues must retain their revenue data ownership and en-
sure this confidential data will not be disclosed.

— Reasoning: Secret-sharing-based SMPC ensures raw revenue values are
never reconstructed. Data is split into shares distributed across multiple
servers, where no single server (or minority coalition) can infer private
values.

— Related PPC feature: [CM] Computing model: secret-sharing-based SMPC.

3. Scenario factor: [S] Collusion resistance [RQT4].

— Requirement: The main collusion risk exists between servers or venues

and needs to be prevented.

2 R;_before: The revenue in a fixed period when not playing any music.
3 R; _after: The revenue in a fixed period while playing music.

4 R;: Each venue i has a confidential increased revenue data.

® Rm: Average (mean) of increased revenue.
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— Reasoning: (1) In a contract-regulated business environment, contrac-
tual obligations between venues and CMOs can deter malicious behavior
(e.g., submitting false data) to some extent. Hence, at least a semi-honest
adversary model will be needed. (2) The primary risk is a passive infer-
ence of individual revenues, not active attack while secret sharing in-
herently mitigates this by splitting data into shares. (3) A server-side
SMPC model creates a separation between computation servers and
venues (clients), reducing collusion incentives to some extent.

— Related PPC' feature: |[TSM] Threat security model: at least a semi-
honest adversary model; [CM] computing model: secret-sharing-based
SMPC; [DM] Deployment model: server-side SMPC model.

4. Scenario factor: [O] Resource-constrained.

— Requirement: Venues may lack computational resources to perform in-
tensive cryptographic operations and communications locally.

— Reasoning: (1) A server-side SMPC model offloads computation to ded-
icated servers. This eliminates the need for peer-to-peer coordination
between venues, reducing local computational burdens and enabling the
possibility of more participating venues. (2) We will prefer semi-honest
rather than malicious-secure protocols to avoid incurring prohibitive
overhead for frequent computations and communications.

— Related PPC feature: [DM] Deployment model: server-side SMPC model;
[TSM] threat security model: semi-honest adversary model.

5. Scenario factor: [O] Efficiency in computation task

— Requirement: The computation of average increased revenue relies pri-
marily on addition and mean operations.

— Reasoning: (1) Secret-sharing protocols optimize arithmetic operations,
outperforming Boolean-centric alternatives (e.g., garbled circuits) on
most linear operations. (2) Server-side deployment usually minimizes
latency for large-scale deployments.

— Related PPC feature:: [DM] Deployment model: server-side SMPC model;
[CM] Computing model: secret-sharing-based SMPC.

For all reasoning holds that a TTP is not available ([RTQ2]).

In summary, our solution selection will be protocols supporting linear or
addition operations, having a server-side deployment, using a secret-sharing-
based approach, and under a semi-honest adversarial model.

Protocol selection. The protocol selection is based on the scenario-specific
technology feature preferences we reasoned from the mapping framework. As
the first attempt, due to the time limit and page limit, we evaluate six protocols
that are from active open source projects or have been widely discussed in the
PPC community. Table 1 below shows how well these popular protocols meet
these technical features and corresponding requirements.

EasySMPC [44] and Prio+ [3] align well with all the SMPC technology fea-
ture preferences we reasoned from the mapping framework. Their open-source
nature also shows their advantages in protocol selection. However, the feasibility
of the experiment (even the real business analysis) also relies on the deployment
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SMPC technology feature preferences
SMPC technology [SF] [TSM]gy [Dl\gl] [CM]
linear, addition | semi-honest server-side | secret sharing
Prio+ [3] ° ° ° °
Overdrive [25] . o . o
FRESCO (BGW) [7] . . o .
Mascot [24] . o o o
Whisper [32] . o . .
EasySMPC [44] . . ° °

Table 1. The degree of satisfaction of different protocols for scenario-specific technical
feature preferences

difficulty and ease of use. The EasySMPC method utilizes email as the main
digital communication channel, which may introduce new security problems and
reduce reliability. Also, the data input approach in EasySMPC is more suitable
for a certain amount of data that is well structured in CSV format, the ap-
proach is too heavy for our scenario needs. The Prio+ protocol is suitable for a
proof-of-concept experiment because we can set different parameters according
to a specific scenario to test its usability as a basic validation, and it ticks all
the boxes. Hence, the Prio+ [3] protocol was selected as a promising security
solution for the scenario ‘Average increased revenue’.

5.3 Validation: Usability of protocol

To evaluate the applicability and usability of SMPC protocols selected according
to our proposed framework and approach based on our scenario analysis, we con-
ducted a proof-of-concept experiment utilizing the selected protocol prototype
6. Prio+. This section outlines the protocol execution procedure, presents the
experimental test results, clarifies the usability, and offers reflections from the
perspective of this first attempt.

Protocol execution procedure. Based on the above analysis, we listed rel-
ative results as below: (1) the selected PPC protocol: Prio+; (2) the required
calculation formula: R,, = w (R; = R; before — R; after); (3) the in-
volved parties: input parties (venues), computation parties (CMOs), output par-
ties (policymakers). All involved participants should acknowledge the specific
computation task and the procedure of the security scenario, ‘Average increased
revenue’. The conceptual security model by the SMPC protocol for this scenario
is shown in Fig. 3. We explain it as below:

1. Input submission: Each venue ¢ has confidential revenue data: R; and act as
an input client to submit it. We assume that all venues will honestly submit
their data since the selected protocol supports semi-honesty.

5 https://github.com/KuraTheDog/Prio-plus
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2. Data walidation: Prio+ enables the input verification using share conver-
sion to make sure the provided revenue increase data are within acceptable
bounds (e.g., non-negative values or not excessively large).

3. Computation factor generation & aggregation: Each input client generates
multiple secret shares of its increased revenue data R;. These shares are
distributed to the aggregators.

4. Computation execution: The computing servers collect the data shares from
all the involved venues and execute computing tasks on their computing
nodes according to the SMPC protocol.

5. Reconstruction & output: The final sum result is sent back to the policymak-
ers’ clients and then reconstructed. The servers do not learn the individual
inputs or the final result unless they collude. In Prio+, in order to compute
the mean, the computation servers are allowed to modestly leak the number
of involved venues and then clients can locally compute the mean.

/" Input Parties /Computation Parties Result Parties

Secret-sharing process

Clients Servers Result receivers

—
Venue data 1 > ]

[Result]
E4
= -~ S
E - erver [MPC code]
MPC
- [MPC code Policymakers.
Venue data 2 7T /
- [data] -~ 2 o TResult]
—
L — =>

i— F ==~ Tdaw] Server2

Venue data n

o ) \‘, B J

Fig. 3. SMPC model for scenario ‘Average increased revenue’: [data] and [Result] are
secret shares divided by SMPC protocol. Different line styles are used solely for visual
clarity, without implying any semantic distinction.

Experiment setting & result. For the scenario proof-of-concept computa-
tion experiment, our basic container deployment using the Prio+ protocol via
Docker is conducted through simulating two server instances and multiple clients
(operates in a cluster of individual clients). We used the supported function:
INT SUM because of the required computation type and function. We tried
different values in two parameters: (1) max_ bits (data size can be input): 212 /216;
(2) num_inputs (number of venues): 10/100/1000. These two parameter set-
tings are related to the actual scenario nature. We look into two variables - total
sent bits and total time - under the different settings of the two parameters we
mentioned before. These two variables can help to measure whether the basic
execution (time, data volume) of the selected protocol is within an acceptable
range.

Validation discussion. Following our solution design approach and the map-
ping framework, the Prio+ [3] protocol was selected as a promising security



Title Suppressed Due to Excessive Length 13

Total Time vs Client Size (by Data Size) Total Sent Bits vs Client Size (by Data Size)
B
10
o005  Data Size (bytes) Data Size (bytes)
- —®— 4096 —@— 4096
65536 65536
—. 0.004
)
= 2
] =]
3 = 1ot
% 0.003 S 10
E s
= =
= 2
S o.002 /

0001 /
10°

10" 10” 10° 10 107 10

Client Size Client Size

Fig. 4. Experimental results obtained using the different parameter settings

solution to satisfy the scenario’s needs. Its technology features align well with
all the security and functional requirements (see Sec. 5.2) and meet practical con-
straints. We demonstrate the matching with the requirements in Table 2. The
experiment results shown in Fig. 4 suggest the usability concerning efficiency of
the selected protocol in this specific ‘Average increased revenue’ scenario.

6 Discussion

6.1 Usability of solution design: mapping framework

The reasonable result we have obtained in this proof-of-concept experiment
shows the feasibility and usability of our proposed design process and frame-
work in finding an appropriate SMPC technology for a specific scenario. By
analysing its execution, we derive critical insights into how technical features
and scenario-specific requirements interact, and how these interactions can guide
future experiments and framework development. The scenario ‘Average revenue
of venues’ serves as a case study to refine our approach and inform the design
of a more comprehensive and rigorous mapping framework.

Identify unsolved security scenario. For each case, how to identify and rea-
son when and why we need advanced PPC methods as the solution for complex
security scenarios will be an interesting problem. As the first step of the solution
design approach in Fig. 2, it can be investigated through the taxonomy study
of security requirements [6,34], the most related issues of security requirements
in DBEs can be generally divided into data breaches, cyberattacks, and privacy
violations [4]. Privacy violations, especially when value analysis involves data
from multiple parties, often lead to complex solution design. Identifying value
objects and transfers early can support security requirement elicitation and help
uncover complex security scenarios.

Practical constraints as another dimension. Through practical construc-
tion and experimentation using the early-stage mapping framework, we find
that practical constraints (e.g., cost, trust level, limited resources) play a key
role in choosing SMPC deployment models. These constraints often influence
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Requirements Index Matching evidence in Prio+

1 Prio+ allows multiple clients’ input, which can be easily set
Functional by the parameter: ‘num__inputs’.

2 Prio+ supports the sum computation type by protocol option

‘INT_ SUM’. In order to compute the average, the protocol
allows the servers to modestly leak the number of venues.
Then clients can locally compute the mean.

3 Our experiment result in Fig.4 confirmed this.

Prio+ built on ‘secret-sharing’ as a cryptographic tool to
keep the data private.

Prio+ ensures raw revenue values are never reconstructed.

Security In Prio+, data is split into shares distributed across multiple

servers, where no single server (or minority coalition) can
infer private values.

4 Prio+ follows the server-side deployment, which creates a
separation between computation servers and venues (clients),
reducing collusion incentives.

5 Prio+ enables the input verification using share conversion
to make sure the provided revenue increase data are within
acceptable bounds.

Table 2. The matching degree of Prio+ to scenario requirements

the trade-off between stronger security guarantees and limited computational or
communication resources.

Priority weighting between factors/features. By introducing additional
assumptions to the mapping framework, priority can be assessed more effectively.
For example, in certain scenarios, performance may take priority if low-latency is
required (e.g., real-time analytics). One example principle can be: for resource-
limited parties (e.g., small venues), prefer lightweight protocols like Prio+ over
more complex, resource-intensive ones.

6.2 Limitations

The potential risks and limitations of this research are as follows: (1) Deploy-
ment complexity remains difficult to estimate and should be incorporated as
an evaluation metric in the proposed framework. (2) Scenarios involving multi-
ple concurrent privacy requirements may introduce protocol-switching needs or
trade-offs, necessitating more comprehensive reasoning and compatibility con-
siderations. (3) As the study is centered on a specific use case in the music DBE
domain, broader validation is required to support generalizability across other
contexts.
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6.3 Future Work

SMPC technique dataset.Our experience in music DBE scenarios shows that
protocol mapping and selection must carefully consider key technical features.
To support this, we plan to create a structured dataset as an appendix to the
mapping framework. This dataset will classify methods by features such as threat
model, computing model, deployment model, support functions, and available
benchmark results. It will help efficiently map to DBE requirements and support
reproducible research.

More case studies. We will expand case studies to other scenarios in MU-
SIC360 or other DBEs, extending the scope to other privacy-preserving meth-
ods as needed. We aim to refine our solution design approach and the mapping
framework, supported by continuous systematic literature review and practical
experience.

7 Conclusion

This study highlights the feasibility of privacy-preserving computation technolo-
gies, especially secure multi-party computation, as a security solution for dig-
ital business ecosystems. By analyzing the MUSIC360 case, we show how to
find suitable SMPC technologies for specific security scenarios to achieve secure
aggregation of sensitive data (e.g., venue revenue) while meeting security and
functional requirements and practical constraints. The proposed mapping frame-
work successfully links scenario-specific requirements factors (e.g., computation
type, anti-collusion, resource constraints) with the technical features of SMPC
(e.g., secret sharing and semi-honest adversarial model). Experimental verifica-
tion confirms the usability of the highly satisfied protocols found according to
the mapping framework in specific DBE security scenarios.

This research emphasizes that SMPC’s strength lies in its ability to keep
privacy in a limited mutual trust environment without sacrificing data utility.
It is a critical advantage for DBEs where stakeholders must collaborate without
exposing proprietary information. By combining the theoretical capabilities of
SMPC with the real-world DBE needs, this work advances the application of
PPC techniques in multi-party settings. It provides practitioners with a founda-
tional approach to systematically evaluate and implement SMPC.
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